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Abstract
Text answers to open-ended questions are often manually coded into one of several pre-
defined categories or classes. More recently, researchers have begun to employ statistical 
models to automatically classify such text responses. It is unclear whether such automated 
coders and human coders find the same type of observations difficult to code or whether 
humans and models might be able to compensate for each other’s weaknesses. We ana-
lyze correlations between estimated error probabilities of human and automated coders 
and find: 1) Statistical models have higher error rates than human coders 2) Automated 
coders (models) and human coders tend to make similar coding mistakes. Specifically, the 
correlation between the estimated coding error of a statistical model and that of a human 
is comparable to that of two humans. 3) Two very different statistical models give highly 
correlated estimated coding errors. Therefore, a) the choice of statistical model does not 
matter, and b) having a second automated coder would be redundant.
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Open-ended questions yield text data. This makes them hard to analyze with quan-
titative methods. Often, open-ended responses are coded into pre-specified codes 
(or categories or classes). Researchers classify text answers either manually or auto-
matically. 

Manual coding refers to human coders classifying text answers, usually based 
on a coding manual. To the extent that some or all of the data are coded by two cod-
ers, any differences need to be resolved (e.g., with an expert coder, or by employing 
a third coder). We call the resulting resolved code the gold standard code.

Automatic coding refers to using a statistical learning model (or “automated 
coder”) to predict the code of text answers. Automatic coding still requires a manu-
ally coded smaller training data set: First, a randomly selected subset of the data is 
selected as training data and coded manually. The size of the training data can vary 
but would typically consist of a few hundred answer texts. Second, the answer texts 
of all answers are converted into numerical n-gram variables (see section “Back-
ground”). Third, a statistical learning model is trained on the training data set. 
Typically, the gold standard codes are used for training. (For other approaches see 
He & Schonlau, to appear). Fourth, the statistical learning algorithm predicts the 
most likely code. 

Both human and automatic coding make mistakes but for different reasons. 
Manual coding error stems from human error, ambiguous text answers, and an 
unclear coding manual. Automatic coding makes mistakes because of statistical 
generalization error and because of any remaining coding mistakes in the gold 
standard codes. While the reasons for mistakes are different, it is unclear whether 
the automatic coding makes similar mistakes as human coders. For example, we do 
not know whether a text answer that is difficult for human coders is also difficult 
for automated coders, or whether automated coders work well on a text answer that 
human coders find easy to code. 

There is no reason to believe that humans and automated coders necessarily 
make similar mistakes: a statistical learning algorithm cannot reason like a human. 
A learning algorithm based on so called n-gram variables evaluates the presence or 
absence of words, or the number of times a word appears, whereas humans try to 
understand entire sentences.
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This paper explores to what extent human coders and automated coders make 
similar coding mistakes. The outline of this paper is as follows: The next section 
introduces background on manual coding and automatic coding for open-ended 
questions. The third section describes the datasets and automatic coding methods 
we use in this paper. The fourth section investigates similarities and differences 
between human and automatic coding. The last section discusses conclusions and 
limitations.

Background
Open-ended questions are particularly useful if researchers do not want to con-
strain respondents’ answers to pre-specified selections. Open-ended questions 
allow respondents to provide diverse answers based on their experience, and some 
answers are probably never thought of by researchers. For example, Bengston et al. 
(2011) found an open-ended question revealed diverse and multidimensional moti-
vations expressed by respondents, while closed-ended question failed to capture 
many dimensions. 

Text data from open-ended questions are usually more difficult for quantita-
tive analysis than numeric data because they are unstructured. A common way of 
analyzing text data is to classify them into classes/categories, either manually or 
automatically. Usually, text answers are coded manually using human coders (Rob-
erts et al., 2014). A disadvantage of manual coding is that it tends to be expensive 
(Geer, 1991; Grimmer & Stewart, 2013). Moreover, the manual coding process is 
subjective (Patel et al., 2012), whereas automatic coding is not. For large data sets, 
automatic coding is also more cost-efficient (Chai, 2019).

Statistical learning enables automatic text classification. Popular statistical 
learning methods applied in analyzing open-ended questions include Naïve Bayes 
(Severin et al., 2017), support vector machines (Bullington et al., 2007) and tree-
based methods (random forests, boosting) (Kern et al., 2019). Some researchers 
have combined statistical learning algorithms with manual coding to achieve better 
classification. For example, Schonlau & Couper (2016) proposed a semi-automatic 
algorithm based on multinomial gradient boosting to code text answers automati-
cally if automatic coding was likely to be correct or code manually otherwise. 

Both human coders and statistical models make mistakes, yet the sources 
of mistakes may be different. Humans make mistakes because of the ambigu-
ity of texts, fatigue, unclear codebooks or a misunderstanding of the meaning of 
responses (Funkhouser & Parker, 1968; He & Schonlau, to appear). Conrad et al. 
(2016) have examined the misclassification of open occupation descriptions and 
found that longer descriptions are less reliably coded than shorter descriptions for 
easy occupation terms, but slightly more reliably coded for difficult occupation 
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terms. Researchers have emphasized the need to assess and improve coder reliabil-
ity (Crittenden & Hill, 1971; Kassarjian, 1977; Montgomery & Crittenden, 1977; 
Hughes & Garrett, 1990). Lombard et al. (2002) provided a standard guideline for 
assessing and reporting inter-coder reliability. Coding error of automated coders 
include human error in the training data (Belloni et al., 2016) and generalization 
(out of sample) error of the fitted model (Giorgetti et al., 2003). If the data are 
double coded the resulting gold standard codes should have little remaining human 
error. The primary source of coding error for automated coding is generalization 
error.

Statistical learning algorithms expect numerical data. Answer texts have to 
be converted to numerical variables. n-gram variables with n=1 contain counts or 
indicators of how often a given word occurs in a text. n-gram variables with n=2 
contain counts or indicators of how often a given word sequence of two words 
occurs in a text. As each unique word is turned into a variable, the number of vari-
ables is potentially very large. Additionally, a “number of words” variable that cap-
tures the length of the text answer is useful in almost all applications. Techniques 
exist to limit the number of variables (stemming, thresholds, stopwords) somewhat 
(Büttcher et al., 2016; Schonlau et al., 2017). Nonetheless, a regression with large 
number of variables requires flexible statistical learning methods, more flexible 
than logistic or multinomial regression.

Despite the widespread application of statistical learning, there are relatively 
few studies about classifying text answers from open-ended questions using sta-
tistical learning models. Conway (2006) pointed out that using automatic coding 
allowed researchers to avoid problems with inter-coder reliability, a major issue of 
human coding when multiple coders are involved. To the best of our knowledge, 
whether humans and models make similar coding errors has not yet been addressed 
in the literature.

Data and Statistical Learning Models
We use three double-coded datasets that we label the Patient Joe, Happiness and 
Democracy datasets. The size of these datasets as well as their percentage of inter-
coder disagreement is listed in Table 1. 

The Patient Joe dataset (Schonlau, 2020) contains answers to an open-ended 
question in a study fielded in Dutch in the LISS panel (http://www.lissdata.nl) in 
2012. The question was to investigate patients’ decision making by asking “Joe’s 
doctor told him that he would need to return in two weeks to find out whether his 
condition had improved. But when Joe asked the receptionist for an appointment, 
he was told that it would be over a month before the next available appointment. 
What should Joe do?” (Martin et al., 2011). These text answers were double coded 
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by two coders into four classes: proactive, somewhat proactive, passive and coun-
terproductive. The disagreement between the two coders was resolved by an expert.

Both the Happiness and Democracy datasets were collected in a web survey 
conducted in November 2017. The participants were from an online-access panel 
in Germany provided by respondi (http://www.respondi.com/EN/). The Happiness 
dataset contains responses to an open-ended question “What aspects of your life 
have you considered when assessing your happiness?” The data were classified into 
10 classes such as social network & surrounding, health and job. The Democracy 
dataset contains responses to a probe question “What aspects did you think of when 
answering the question how satisfied you were with the way democracy works in 
Germany?” The data were classified into 7 classes such as “actors & groups”, “pub-
lic policy areas” and “evaluation of behavior of politicians & parties”. Both datasets 
were double coded with inter-coder disagreement being resolved through a group 
discussion.

We use two widely used statistical learning models, support vector machines 
(SVM) and random forests (RF) as representatives of statistical learning models 
(James et al., 2013). SVM and RF are supervised learning methods like logistic or 
linear regression. However, they are far more flexible and usually predict better. 
SVMs are formulated as an optimization problem: For a binary outcome, SVMs 
find the separating hyperplane between the two classes that maximize the distance 
of the closest point to the hyperplane. Because the two outcome classes are almost 
never perfectly separable, an error budget allows for a certain amount of misclas-
sification. Random forests take a very different approach: Broadly speaking, RF 
aggregate predictions from individual regression trees trained on bootstrap sam-
ples.

We randomly split each of the three datasets into a training dataset and a test 
dataset. The SVM and random forests are trained on the “gold standard coding” 
(the coding after disagreement-resolution) of the training data. We use the trained 

Table 1 The data size, the percentage of disagreement and kappa of the 
Patient Joe, Happiness and Democracy data.

Size of the 
(whole) dataset

Size of training 
dataset

Size of test 
dataset

Percentage of 
disagreement Kappa 

Patient Joe 1756 1000 756 23.18% 0.61

Happiness 1438  800 638  5.77% 0.93

Democracy 1096  600 496 14.42% 0.82
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models to predict the codes of the test data. These predicted codes are then referred 
as the codes of automated coders in later experiments. 

Results
Do Automated Coders Achieve Similar Coding Accuracy as 
Human Coders?

Figure 1 shows the coding accuracy of two automated coders and two human coders 
in the three datasets. The coding accuracy is the proportion of codes that match the 
gold standard code. Earlier we said that automatic coding makes mistakes because 
of statistical generalization error and because of any remaining coding mistakes 
in the gold standard codes. When comparing to the gold standard code, the coding 
error of automated coding is only due to statistical generalization error, not due to 
human error. The coding accuracy is evaluated on the test data, as is appropriate for 
statistical learning models.

We see from Figure 1 that the coding accuracy of SVM and RF is lower than 
that of human coders. The differences are statistically significant in a two-pro-
portion z-test: all p-values are smaller than 0.01. Therefore, when we investigate 
whether models and humans make the same mistake, we have to remove the effect 
of different error rates.
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Figure 1 Coding accuracy of automated coders and human coders on the test 
data for the Patient Joe, Happiness and Democracy datasets.
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Do Automated Coders and Human Coders have Similar 
Error Probabilities?

If both automated coders and human coders have a high probability to code an 
observation incorrectly, we infer that they make similar mistakes. Automated cod-
ers naturally produce the model-based probability of making a coding error. For 
example, suppose a model outputs the probability of a response belonging to one of 
four categories as follows: 0.6 “proactive”, 0.2 “somewhat proactive”, 0.1 “passive”, 
and 0.1 “counterproductive”. In that case the predicted category is “proactive”. The 
model-based probability of an error depends on the true class of the response. If 
the true class is “proactive”, the model-based error probability is 1-0.6=0.4 or 40%.

By contrast, human coders simply code an observation. The code is either 
correct (coded as 1) or incorrect (coded as 0). A model-based error probability is 
not available for human coders. However, we can estimate such a probability by 
aggregating the data into subsets. The estimated probability is then the propor-
tion of correctly coded codes for each subset. Rather than forming the subsets at 
random, we order the observations by their average estimated model-based coding 
error probability. For example, if 10 subsets are desired, each decile of the obser-
vations ordered by their coding error probability forms one subset. Appendix A 
briefly illustrates this idea. In this paper, we divide the test set into 36 subsets for 
the Patient Joe dataset, 29 subsets for the Happiness dataset, and 31 subsets for the 
Democracy dataset.

Next, we compute two-way correlations among the estimated probabilities for 
the four coders (two automated coders and two human coders) for each dataset. 
Since the estimated coding error probabilities for humans only exist at the aggre-
gated level, we also estimate the coding error probabilities for automated coders 
in each subset to make sure the probabilities of different coders are comparable. 
Table 2 shows a correlation matrix of estimated coding error probabilities.

We find that all the correlations are positive, and the correlation between an 
automated coder and a human coder is similar in magnitude to the correlation 
between two human coders. This suggests that both the human coders and the auto-
mated coders find the same observations easy or hard to code. Also, the extent of 
agreement between a human coder and an automated coder as compared to two 
human coders is very similar. However, the correlations only imply a tendency to 
find the same observations difficult; they do not imply the same level of accuracy. 
The previous section already found that human coders are more accurate as com-
pared to automated coders.

We also find that the correlation between the two automated coders is very 
high. In fact, for the Democracy and Happiness data, the correlation rounds to 1.00. 
Given that the two automated coders also have almost the same accuracy (Fig-
ure 1), it does not matter which statistical learning model we choose: they are func-
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tionally equivalent. This is different for the two human coders which have a more 
moderate positive correlation.

The analysis of the correlation matrices reveals pairwise similarities for the 
four coders, yet the overall similarities or differences of the four coders is unclear. 
To answer this question, we use principal component analysis (PCA) to analyze 
the estimated error probabilities. The error probabilities of each of the four coders 
are standardized as part of PCA; standardization to the same mean removes the 
differential error rates among coders. The correlations between the coding error 
probabilities for each method and the principal components are listed in Table 3.

The three analyses of the three datasets tell similar stories. The first principal 
component explains most of the variation (65%-80%) in the estimated error prob-
abilities among the four coders. The first principal component can be interpreted as 
an average of the four coders and represents what the coders have in common. The 
principal component corresponding to the difference between automated coders 
and human coders (the third component for the Patient Joe and the second compo-
nent for the Happiness and Democracy data) explains 22% or less of the total varia-
tion. The remaining (second or third) principal component represents a specific 

Table 2 Correlation matrix of estimated error probabilities for each dataset.

SVM RF Coder 1 Coder 2

Patient Joe
SVM 1.00 0.95 0.44 0.88

RF 1.00 0.44 0.89

Coder 1 1.00 0.29

Coder 2 1.00

Happiness
SVM 1.00 1.00 0.70 0.69

RF 1.00 0.71 0.69

Coder 1 1.00 0.65

Coder 2 1.00

Democracy
SVM 1.00 1.00 0.53 0.31

RF 1.00 0.51 0.31

Coder 1 1.00 0.40

Coder 2 1.00
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contrasts of one human coder vs. the other human coder and the two automated 
coders. The fourth principal component explains almost no variation because the 
two automated coders give nearly identical estimates, removing one dimension. In 
summary, the coders’ estimated error probabilities exhibit far more communalities 
than differences.

Examples on Which Automated Coders and Human Coders 
Agree or Disagree

In an effort to gain further insight into differences and similarities between human 
coding and automatic coding, we now look at some specific coding examples for 

Table 3 Correlation between principal components and the original 
estimated error probabilities. The percentage of variation explained 
for each principal component is also given.

Dim.1 Dim.2 Dim.3 Dim.4

Patient Joe
SVM 0.97 0.10 0.18 0.15

RF 0.97 0.11 0.11 -0.17

Coder 1 0.55 -0.83 -0.05 0.00

Coder 2 0.92 0.28 -0.27 0.03

Variation explained 76.0% 19.7% 2.9% 1.3%

Happiness
SVM 0.95 0.30 0.05 0.04

RF 0.95 0.29 0.04 -0.04

Coder 1 0.85 -0.27 -0.46 0.00

Coder 2 0.84 -0.41 0.37 -0.00

Variation explained 80.7% 10.4% 8.8% 0.1%

Democracy
SVM 0.94 0.32 0.14 0.03

RF 0.93 0.33 0.16 -0.03

Coder 1 0.75 -0.25 -0.62 -0.00

Coder 2 0.55 -0.77 0.33 0.00

Variation explained 65.0% 21.7% 13.3% 0.1%
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one of the datasets, the Patient Joe data. The responses we discuss below are sum-
marized in Table 4 with their English translation.

Some responses are inherently easy to code for both human and automated 
coders. For example, a response “I would accept.” (“ik zou accepteren”) is short 
and clear. Other responses appear more complicated, yet both human and auto-
mated coders code correctly. For example, the response “Feedback to the relevant 
physician. If Joe would get again nothing in response to the request (so only to 
have the possibility of an appointment in a month), request a second opinion from 
another doctor / hospital. This example happened to me!” is relatively long and 
consists of three sentences, but both human coders and automated coders correctly 
coded this response to be “proactive”. Here “proactive” means that the patient 
insists on checking with the doctor rather than accepting the appointment or to go 
to another doctor/hospital. The categorization is not trivial for an automated coder, 
because the phrase “other doctor” is part of the respondent’s answers. This suggests 
that automated coders can work well on both simple and complicated text answers.

The text is coded into n-gram variables, specifically indicator variables of the 
presence or absence of single words (unigrams) or bigrams. As a consequence, if 
individual n-gram variables are highly indicative of a code (or class) then the model 
will be able to code the text more easily. For example, in the Patient Joe data, if 
a response contains the phrase “2 weeks”, the SVM or random forests model is 
likely to code it as “proactive” because most responses containing “2 weeks” say 
Joe should insist to see the doctor in two weeks. Highly discriminative n-gram 
variables often help automated coders, but not always. For example, a response 
“tell the assistant that he has to come again with 2 weeks and that there is probably 
still a place available” contains the words “2 weeks”. However, such a response 
is not categorized as proactive in this coding scheme because merely telling the 
receptionist (rather than insisting/ refusing to accept) leaves a reasonable chance of 
failure. While both human coders realized this response is not proactive, the two 
automated coders still classified it as proactive because they relied on the words 
“2 weeks” too heavily. We understand that statistical models make complex trad-
eoffs between the variables and do not merely sum the evidence from each n-gram. 
Nonetheless, they are greatly helped by a few strong indicators.

Human coders and automated coders have different ways of dealing with 
responses that contain only new words not observed in the training data. Auto-
mated coders, once trained, assign these responses to a code based on the length of 
the response and the absence of all known words. In our experiments, the default 
code of SVM and random forests in the Patient Joe is “passive” for a response 
with 7 words, in the Happiness is “social network & surrounding” for a response 
with 2 words, and in the Democracy is “situation” for a response with 2 words. 
Human coders do not classify new responses only based on past coding experience; 
instead, they code using their knowledge. They can classify responses that are com-
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pletely new to any of the classes. For example, “stay home” (“thuis blyven”) does 
not appear in the training data. SVM and random forests incorrectly classified it to 
the default code 2 (passive). By contrast, the human coders correctly classified the 
response to the code “counterproductive”.

Table 4 Example responses for various human vs. automatic coding results 
in the Patient Joe data. We show both the original response in Dutch 
and our English translation.

Coding result Original response Translated response

Human coders correct;  
automated coders correct.  
(short and easy)

ik zou accepteren. I would accept.

Human coders correct;  
automated coders correct.  
(long and complicated)

Terugkoppelen naar de 
betreffende arts. Als Jan 
opnieuw nul op het request 
zou krijgen (dus alleen bij 
de mogelijkheid van een 
afspraak over een maand 
terecht zou kunnen), een 
second opinion aanvra-
gen bij een andere arts / 
ziekenhuis Dit voorbeeld is 
mijzelf overkomen!

Feedback to the relevant 
physician. If Joe would get 
again nothing in response 
to the request (so only to 
have the possibility of an 
appointment in a month), 
request a second opinion 
from another doctor / 
hospital. This example 
happened to me!

Human coders correct;  
automated coders correct.  
(contains phrase “2 weeks”)

Er op staan dat er toch 
over 2 weken een afspraak 
komt omdat ook de arts dit 
zo wil

Insist that there will be an 
appointment in 2 weeks 
because the doctor also 
wants this

Human coders incorrect; 
automated coders correct.  
(contains phrase “2 weeks”)

zeggen tegen de assistente 
dat ie met 2 weken weer 
moet komen en dat er vast 
nog een plekje vrij is

tell the assistant that he 
has to come again with 
2 weeks and that there 
is probably still a place 
available

Human coders correct;  
automated coders incorrect.  
(contains no known infor-
mation)

thuis blyven stay home
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Discussion
We have investigated the relationship between automatic coding and manual cod-
ing by examining the similarities between their estimated coding errors. Crucially, 
we were able to estimate human coding error probabilities by aggregating the 
coded text answers to subsets. We found that when coding all observations auto-
matically, automatic coding has a higher error rate than manual coding. However, 
coding errors correlate: automated coders and human coders tend to find the same 
responses difficult to code.

Although we find that human coders and automated coders make similar cod-
ing mistakes, the logic behind their mistakes is different. Automated coders code 
well on responses containing crucial words (unigrams or bi-grams): these words are 
usually indicators of some classes. These words may also help human coders, yet 
they are not as important as for automated coders (or humans can better understand 
responses containing no crucial words). Automated coders code responses without 
crucial words or without any known information by classifying them into the same 
default class (for a given answer length). Human coders do not have a default class: 
they code new responses based on understanding the meaning of texts.

The error rate is overall higher for automated coders based on n-gram vari-
ables than for human coders. Semi-automatic coding (Schonlau & Couper, 2016) 
– coding easy-to-code observations automatically and the remainder manually – is 
thus useful.

As is customary, the statistical learning models are trained on a random train-
ing subset of the data and predicted on the remaining test data. To confirm that the 
findings do not depend on the particular random train/test split, we also used leave-
one-out cross validation and obtained qualitatively the same results. 

Limitations of this study include: 1) We used SVM and random forests as 
representatives of automated coders. There are other statistical learning models. 
We believe that using a different model would not have large impacts on the results, 
which is partially demonstrated by the high similarity between SVM and random 
forests. 2) We estimated the error probability of human coders by dividing the 
data into multiple subsets and estimating the error in each subset. The estimation 
depends on the how we divide the data into subsets. We ordered observations based 
on the average error probabilities of SVM and random forests. This is not the only 
way of creating subsets but is preferable over random subsets in which the average 
probabilities would cluster more around the population mean. 

In summary, automated coders and human coders tend to find the same text 
answers difficult to code. There is no point in having two different automated cod-
ers (RF and SVM): Automated coders almost always predict the same code.



115 He, Schonlau: Coding Text Answers to Open-ended Questions

Reference
Belloni, M., Brugiavini, A., Meschi, E., & Tijdens, K. (2016). Measuring and detecting er-

rors in occupational coding: an analysis of share data. Journal of Official Statistics, 
32(4), 917–945. https://doi.org/10.1515/JOS-2016-0049

Bengston, D. N., Asah, S. T., & Butler, B. J. (2011). The diverse values and motivations of 
family forest owners in the United States: an analysis of an open-ended question in 
the national woodland owner survey. Small-Scale Forestry, 10(3), 339–355. https://doi.
org/10.1007/s11842-010-9152-9

Bullington, J., Endres, I., & Rahman, M. A. (2007). Open-ended question classification 
using support vector machines. In Modern AI and Cognitive Science Conference 
(MAICS) 2007. www.jrbcs.com/files/OE_Question_Classification_Using_SVM.pdf

Büttcher, S., Clarke, C. LA, & Cormack, G. V. (2016). Information retrieval: Implementing 
and evaluating search engines. MIT Press.

Chai, C. P. (2019). Text mining in survey data. Survey Practice, 12(1), 1–14. https://doi.
org/10.29115/sp-2018-0035

Conrad, F. G., Couper, M. P., & Sakshaug, J. W. (2016). Classifying open-ended reports: 
factors affecting the reliability of occupation codes. Journal of Official Statistics, 32(1), 
75–92. https://doi.org/10.1515/JOS-2016-0003

Conway, M. (2006). The subjective precision of computers: a methodological comparison 
with human coding in content analysis. Journalism and Mass Communication Quar-
terly, 83(1), 186–200. https://doi.org/10.1177/107769900608300112

Crittenden, K. S., & Hill, R. J. (1971). Coding reliability and validity of interview data. Ame-
rican Sociological Review, 36(6), 1073–1080. https://doi.org/10.2307/2093766

Funkhouser, G. R., & Parker, E. B. (1968). Analyzing coding reliability: the random-
systematic-error coefficient. Public Opinion Quarterly, 32(1), 122–128. https://doi.
org/10.1086/267585

Geer, J. G. (1991). Do open-ended questions measure “salient” issues? Public Opinion 
Quarterly, 55(3), 360–370. https://doi.org/10.1086/269268

Giorgetti, D., Prodanof, I., & Sebastiani, F. (2003). Automatic coding of open-ended ques-
tions using text categorization techniques. Proceedings of the 4th International Confe-
rence of the Association for Survey Computing (ASCIC 2003), 173–184. 

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic 
content analysis methods for political texts. Political Analysis, 21(3), 267–297. https://
doi.org/10.1093/pan/mps028

He, Z., & Schonlau, M. (n.d.). Automatic coding of text answers to open-ended questions: 
should you double code the training data? Social Science Computer Review. https://doi.
org/10.1177/0894439319846622

Hughes, M. A., & Garrett, D. E. (1990). Intercoder reliability estimation approaches in mar-
keting: a generalizability theory framework for quantitative data. Journal of Marketing 
Research, 27(2), 185–195. https://doi.org/10.2307/3172845

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical 
learning. Springer.

Kassarjian, H. H. (1977). Content analysis in consumer research. Journal of Consumer Re-
search, 4(1), 8–18. https://doi.org/10.1086/208674



methods, data, analyses | Vol. 15(1), 2021, pp. 103-120 116 

Kern, C., Klausch, T., & Kreuter, F. (2019). Tree-based machine learning methods for survey 
research. Survey Research Methods, 13(1), 73–93. https://doi.org/10.18148/srm/2019.
v13i1.7395

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in mass commu-
nication: assessment and reporting of intercoder reliability. Human Communication 
Research, 28(4), 587–604. https://doi.org/10.1093/hcr/28.4.587

Martin, L. T., Schonlau, M., Haas, A., Derose, K. P., Rosenfeld, L., Buka, S. L., & Rudd, R. 
(2011). Patient activation and advocacy: which literacy skills matter most? Journal of 
Health Communication, 16(SUPPL. 3), 177–190. https://doi.org/10.1080/10810730.201
1.604705

Montgomery, A. C., & Crittenden, K. S. (1977). Improving coding reliability for open-ended 
questions. Public Opinion Quarterly, 41(2), 235–243. https://doi.org/10.1086/268378

Patel, M. D., Rose, K. M., Owens, C. R., Bang, H., & Kaufman, J. S. (2012). Performance 
of automated and manual coding systems for occupational data: a case study of his-
torical records. American Journal of Industrial Medicine, 55(3), 228–231. https://doi.
org/10.1002/ajim.22005

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., 
Albertson, B., & Rand, D. G. (2014). Structural topic models for open-ended sur-
vey responses. American Journal of Political Science, 58(4), 1064–1082. https://doi.
org/10.1111/ajps.12103

Schonlau, M. (2020). Size text box, Patient Joe data. CentERdata. https://www.dataarchive.
lissdata.nl/study_units/view/971

Schonlau, M., & Couper, M. P. (2016). Semi-automated categorization of open-ended ques-
tions. Survey Research Methods, 10(2), 143–152. https://doi.org/10.18148/srm/2016.
v10i2.6213

Schonlau, M., Guenther, N., & Sucholutsky, I. (2017). Text mining with n-gram variables. 
The Stata Journal, 17(4), 866–881. https://doi.org/10.1177/1536867X1801700406

Severin, K., Gokhale, S. S., & Konduri, K. C. (2017). Automated quantitative analysis of 
open-ended survey responses for transportation planning. 2017 IEEE SmartWorld Ubi-
quitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Com-
puting and Communications, Cloud and Big Data Computing, Internet of People and 
Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 -, 
1–7. https://doi.org/10.1109/UIC-ATC.2017.8397567



117 He, Schonlau: Coding Text Answers to Open-ended Questions

Appendix A
An Example of How to Estimate Error Probabilities of Human 
Coders

Suppose a model classifies an observation correctly (based on the gold standard 
code) with a probability of, for example, 0.7. Then the model-based error prob-
ability is 0.3. Humans just choose a code; no error probability is available. In this 
appendix we illustrate how the error probabilities of human coders are estimated 
using a toy data set. Table A1 shows the error probabilities of automated coders and 
whether the codes of the human coder are correct based on the gold standard code 
(the columns of Coder 1 and Coder 2). For this example, only the models’ error 
probability matters; what code SVM and RF chose is not relevant.

Table A1 Model-based error probabilities and whether or not human coders 
coded correctly based on the gold-standard in the toy example.

Observation 
Index

SVM error  
probability

RF error  
probability Coder 1 Coder 2

1 0.1 0.2 correct correct

2 0.1 0.1 correct correct

3 0.3 0.2 incorrect correct

4 0.5 0.3 correct incorrect

5 0.2 0.4 incorrect incorrect

6 0.1 0.0 correct correct

7 0.6 0.4 incorrect incorrect

8 0.2 0.4 correct incorrect

9 0.3 0.3 correct correct

10 0.5 0.4 incorrect incorrect

11 0.2 0.1 correct correct

12 0.2 0.2 incorrect correct

13 0.3 0.2 correct correct

14 0.2 0.3 correct correct

15 0.4 0.5 incorrect correct
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First, we compute the average error probability of the two automated coders (SVM 
and RF). We then sort the observations according to the average error probability. 
Next, we divide the ordered observations into equal-sized subsets. In this example, 
we choose 3 subsets: A, B and C. Table A2 shows the grouping of observations.

Table A2 Observations ordered by the average error probability of the 
automated coders in the toy example.

Observation 
Index Coder 1 Coder 2

SVM  
error 
prob.

RF  
error 
prob.

Average error probability 
of automated coders Subset

7 incorrect incorrect 0.6 0.4 0.5 A

10 incorrect incorrect 0.5 0.4 0.45 A

15 incorrect correct 0.4 0.5 0.45 A

4 correct incorrect 0.5 0.3 0.4 A

5 incorrect incorrect 0.2 0.4 0.3 A

8 correct incorrect 0.2 0.4 0.3 B

9 correct correct 0.3 0.3 0.3 B

3 incorrect correct 0.3 0.2 0.25 B

13 correct correct 0.3 0.2 0.25 B

14 correct correct 0.2 0.3 0.25 B

12 incorrect correct 0.2 0.2 0.2 C

1 correct correct 0.1 0.2 0.15 C

11 correct correct 0.2 0.1 0.15 C

2 correct correct 0.1 0.1 0.1 C

6 correct correct 0.1 0.0 0.05 C
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Next, we compute the human error probabilities within each subset. Among the 5 
observations in subset A, coder 1 matches the gold standard codes on one observa-
tion only. Therefore, we estimate the error probability of coder 1 on subset A as 
1-1/5=0.8 or 80%. Similarly, in subset B, coder 1 matches the gold standard codes 
on four observations, and the estimated error probability of coder 1 on subset B 
is 1-4/5=0.2 or 20%. We compute the remaining human error probabilities analo-
gously. For automated coders, we average the error probabilities within each subset. 
The averaged error probability of automated coders and the estimated error prob-
ability of human coders per subset are shown in Table A3. 

Table A3 Average error probabilities of human and automated coders for each 
subset.

Subset Error probability  
of Coder 1

Error probability  
of Coder 2

Average error  
probability of SVM

Average error  
probability of RF

A 0.8 0.8 0.44 0.4

B 0.2 0.2 0.26 0.28

C 0.2 0 0.14 0.12




