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Abstract
Explicitly stratified sampling (ESS) and implicitly stratified sampling (ISS) are well-es-
tablished alternative methods for controlling the distribution of a survey sample in terms 
of variables that define the strata. If these variables are correlated with survey estimates, 
the estimates will benefit from improved precision. With ESS, unbiased estimation of the 
standard errors of survey estimates is possible, provided that sampling strata membership 
is identified on the survey dataset. With ISS this is not possible and usual practice is to in-
voke an approximation that tends to result in systematic over-estimation of standard errors. 
This can be perceived as a disadvantage of ISS. However, this article demonstrates, both 
theoretically and through a simulation study, that true standard errors can be smaller with 
ISS and argues that this advantage may be more important than the ability to obtain unbi-
ased estimates of the standard errors. The simulation findings also suggest that the extent 
of over-estimation with the usual approximate variance estimator may be modest.
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Most surveys use stratified sampling designs. This is done in order to benefit from 
the precision gains that such designs can bring. For a modest effort in designing 
the sample, the precision gains can often be equivalent to those that would accrue 
from carrying out tens or even hundreds of extra interviews. Stratified sampling is 
therefore highly cost-effective. However, there are many different ways that it can 
be done. The researcher must choose which variables to use, and how to combine 
them to define the strata. She must also decide whether all strata should be sam-
pled at the same rate (proportionate stratified sampling) or whether some should 
be over-sampled, perhaps in order to increase the representation in the sample of 
certain subgroups (disproportionate stratified sampling). Though the researcher is 
typically constrained to define strata in terms of information that is either available 
on the sampling frame or can be linked to the frame, this still usually leaves a lot of 
options regarding exactly how the information should be used. The better the deci-
sions, the more cost-effective the survey design will be.

This article focuses on one specific decision that the researcher must make: 
whether to use explicitly stratified sampling (ESS) or implicitly stratified sampling 
(ISS). For simplicity, the arguments are illustrated in the context of proportionate 
stratified sampling, but the arguments apply equally when sampling is dispropor-
tionate, as a similar decision must be made within each top-level sampling domain. 
The arguments also apply when a decision is being made about how to stratify at a 
secondary level, i.e. within primary explicit strata.

ESS involves sorting the population elements into explicit groups (strata) and 
then selecting a sample independently from each stratum. ISS involves ranking 
the elements following some ordering principle and then applying systematic sam-
pling, i.e. selecting every nth element. For example, if the sampling frame were a list 
of people containing a single auxiliary variable, date of birth, proportionate ESS 
would involve creating strata corresponding to a number of discrete age groups and 
then selecting, using simple random sampling (SRS), a number of people from each 
group such that the proportion of the sample in each group equals the proportion 
of the population in the group. ISS, on the other hand, would involve sorting the 
people from youngest to oldest (or oldest to youngest; this is equivalent) and then 
selecting every nth person on the list (after generating a random start point).

The advantage of ESS is that unbiased estimation of the standard errors of 
survey estimates is possible, provided that the sampling stratum membership is 
identified on the survey dataset and provided that at least two sample elements are 
selected from each stratum. With ISS this is not possible and usual practice is to 
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invoke an approximation that tends to result in systematic over-estimation of stan-
dard errors. This can be perceived as a disadvantage of ISS. However, this begs the 
question of whether it is better to know the precision of one’s estimates or to have 
more precise estimates without knowing exactly how much more precise they are.

On the other hand, there are several disadvantages of ESS relative to ISS. One 
of these relates to the focus of this article: a greater precision gain due to strati-
fied sampling can be achieved with ISS than with ESS (Madow and Madow, 1944; 
Cochran, 1946). Another disadvantage of ESS is that it is not possible to obtain 
an equal-probability sample unless each stratum size is an exact multiple of the 
sampling interval. Consequently, unequal design weights must be applied, with an 
associated further loss in precision. Furthermore, it is not possible to stratify deeply 
on a combination of many variables, due to restricting limitations on the number of 
strata and an associated risk of greater variation in the design weights the larger the 
number of explicit strata relative to the sample size. Deeper stratification is possible 
with ISS.

ESS is often used in order for different sampling fractions to be applied to 
different sub-domains of the population (disproportionate stratified sampling), by 
creating the strata to reflect the sub-domains. However, this should not be perceived 
as an advantage of ESS as the same can be achieved with ISS by assigning a size 
measure to each element proportional to the desired sampling fraction and making 
selections with probability proportional to this size measure. Variance estimation 
for variable probability systematic sampling is considered by Stehman and Overton 
(1994). 

The potential of ISS to provide a greater precision gain than ESS is recognised 
in the statistical literature (e.g. Madow & Madow, 1944; Kish, 1965) but is not 
given attention in the sample design sections of generalist survey research hand-
books or textbooks. For example, Groves et al. (2009) explain ESS and how, with 
proportionate allocation to strata, it can improve precision compared to simple ran-
dom sampling (pp. 113-120). They then introduce systematic selection as “a sim-
pler way to implement stratified sampling” (p. 122), but make no mention of the 
implications for precision, other than a rather general statement that “Systematic 
sampling from an ordered list is sometimes termed “implicitly stratified sampling” 
because it gives approximately the equivalent of a stratified proportionately allo-
cated sample” (p. 124). Even texts that are devoted specifically to sampling, when 
written for non-statisticians, do not mention explicitly how ESS and ISS compare in 
terms of precision. For example, Henry (1990) states that “Systematic sampling has 
statistical properties that are similar to simple random sampling” (p. 98), and sub-
sequently, “Another advantage is that systematic sampling can be used for de facto 
stratification to insure proportional representation of the population for some char-
acteristic” (p. 98), but with no further mention of precision. In a subsequent section 
on ESS, however, Henry states that “stratification reduces standard errors” (p. 101) 
and demonstrates how this works with formulas and a worked example. Kalton 
(1983) too explains the variance properties of ESS at some length (pp. 20-24), while 
the shorter section devoted to ISS focusses instead on the practicality of implemen-
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tation: “systematic sampling provides a mean of substantially reducing the effort 
required for sample selection” (p. 16). 

Even the most recent specialist texts on survey sampling provide very little 
detail on the statistical properties of ISS. Bethlehem (2009) merely points out that, 
“the sample variance […] need not necessarily be a good indicator of the variance 
of the estimator” (p. 79) and then suggests that the only way to obtain an unbiased 
estimator for the variance is to select multiple samples and combine the observed 
sample means. Approximations are not mentioned. Valliant et al (2013) state that, 
“Systematic sampling is often used in practice because it is fairly easy to implement 
and it can be used to control the distribution of a sample across a combination of 
auxiliary variables” (p. 63) and “Regardless of the reasons for its use, statisticians 
usually collapse the selection intervals into one or more analytic strata and pretend 
the method of selection was something else, like stsrswor, stsrswr, or ppswr, in 
order to estimate a variance.” (p. 64). It is therefore unsurprising if survey research-
ers may have the impression that ESS is the (only) way to improve precision com-
pared to SRS. 

Furthermore, empirical demonstrations of the relative performance of ESS 
and ISS are surprisingly hard to find.  This article provides an exposition of the 
distinction between ESS and ISS and attempts, via a simulation study using real 
survey data, to quantify the extent of the improvement in precision with ISS and the 
extent of the uncertainty about the improvement in precision if the usual approxi-
mation is used to estimate standard errors. In the next section, the relevant aspects 
of sampling theory are presented and are used to derive an expression for the differ-
ence in sampling variance between ESS and ISS. The subsequent sections describe 
how a simulation study will be used to quantify the true difference in sampling 
variance between the two designs and the extent to which sampling variance will 
tend to be over-estimated if the usual approximation is used in the case of ISS. The 
results from the study are then presented and the implications are discussed in the 
final section.

Sample Designs and Variance Estimators
For simplicity of exposition, it will be assumed that survey estimates are means 
or proportions. Under ESS, the sampling variance of the sample mean can be 
expressed (Kish, 1965, p. 81; Cochran, 1977, p. 69) as:
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Ni is the number of population elements in stratum i;

and 1
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From this expression it can be seen that differences between strata in terms of y 
do not contribute to the sampling variance. The sampling variance depends only 
on the variance of y within the strata. This demonstrates how stratified sampling 
improves the precision of estimates; by eliminating any influence on the sample of 
one part of the variance of y, namely the part that is between-strata. Once a sur-
vey has been carried out, assuming equal probabilities of selection, ( )ˆVar y  can be 
estimated in a straight-forward manner from the survey data, by substituting the 
observed within-stratum sample variances ( )2

is  for the corresponding population 
variances ( )2

iS , thus:
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For ISS designs there is of course no concept of explicit strata, so the {i} in expres-
sion (2) are not defined. The design-based variance of a sample mean is equiva-
lent to that under cluster sampling with a sample size of one cluster (Madow & 
Madow, 1944). Unbiased sample-based estimators of this variance do not exist. 
While a number of estimators have been proposed, all of them are biased and all 
will over-estimate the variance whenever the stratification effect is anything more 
than negligible (Wolter, 1984; Wolter, 1985, pp. 258-262). A commonly-used vari-
ance estimation method is to treat the ordered list of selected elements as if each 
consecutive pair had been selected from the same stratum, a method referred to by 
Kish (1965, p. 119) as the “paired selections model”, and by Wolter (1985, pp. 250-
251) as the “estimator based on nonoverlapping differences”. Thus, a systematic 
sample of n elements from an implicitly-stratified list is treated as if it consisted of 
simple random samples of size 2 from each of n/2 explicit strata. Analogous meth-
ods, in which elements selected from more than one stratum are treated as if they 
had been selected from the same stratum, are also sometimes used in the context of 
ESS, particularly when there exists one or more strata in which only one element 
is selected or observed (Cochran, 1977; Seth, 1966; Rust & Kalton, 1987). In order 
to compare the sampling variance of ISS and ESS, we can consider the situation in 
which the ISS pseudo-strata are subsets of the ESS strata. This is a realistic reflec-



methods, data, analyses | Vol. 13(2), 2019, pp. 253-266 258 

tion of the example mentioned in the previous section of stratifying either explicitly 
or implicitly using date of birth. We will denote the ISS substrata by j = 1, … , Ji. 
Then, the approximation usually invoked to estimate the sampling variance associ-
ated with ISS is:
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whereas the true ISS sampling variance is:
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where
there are N/n possible samples that could be selected, corresponding to the 
N/n possible random start points;
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This true variance can be thought of as the sampling variance of a mean under clus-
ter sampling, with a sample size of one cluster, where the population is divided into 
N/n clusters, hy  are the cluster means, and y  is the population mean.

Expression (4) is also used as an estimator for 1-per-stratum designs. In this 
case, the estimator is known to be upwardly-biased (Fuller, 2009, p. 202; Breidt et 
al., 2016). ISS is similar to 1-per-stratum sampling, so the bias in using expression 
(4) as an estimator for (5) might be assumed to be similar, but the designs are not 
exactly equivalent. In particular, with ISS stratum boundaries are arbitrary and are 
constrained only conditionally on the random start, and ordering within strata is not 
random. It should be clear from expression (4) that both ISS and 1-per-stratum ESS 
should provide greater precision than the most precise form of ESS that enables 
unbiased estimation of standard errors, namely 2-per-stratum ESS ( )1 2

I
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If the ordering of elements within each stratum in a 2-per-stratum design is com-
pletely random, then further sub-dividing each stratum j into two substrata (kj = 
1,2) to create a 1-per-stratum design will have no effect on the sampling variance as 
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jk js s<  for at least some j, k, and hence reduced sampling vari-

ance. Wolter (1985) presents a series of simulations in which the estimator based on 
nonoverlapping differences is shown to sometimes be upwardly-biased and some-
times downwardly-biased as an estimator of the ISS variance, depending on the 
nature of the population ordering.
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Simulation Methodology
Data from wave 1 of Understanding Society, the UK Household Longitudinal 
Study, are treated as population data. These data are used to calculate the sampling 
variance of means and proportions under simple random sampling, ESS and ISS, 
in ways that will be described in this section. Understanding Society is a large 
nationally-representative multi-topic general population survey. A stratified, multi-
stage sample of addresses was selected (Lynn, 2009) and all persons aged 16 or 
over resident at a sample address were eligible for an individual interview at wave 
1. Members of ethnic minority groups and residents of Northern Ireland were sam-
pled at higher rates than the remainder of the population. Data collection took place 
face-to-face in respondent’s homes using computer-assisted personal interviewing 
(CAPI) between January 2009 and March 2011. At wave 1, 50,295 individual inter-
views were completed with sample members. For the illustrative purposes of this 
article, these individuals are treated as a population from which survey samples are 
to be selected.

A set of eleven target parameters were selected for study. Of these, five are 
means of continuous variables and six are proportions based on binary variables. 
For each, we are interested in comparing the sampling variance of the sample sta-
tistic under alternative sampling designs and the estimate of the ISS sampling vari-
ance using the successive pairing approach. For ease of exposition and calculation, 
for each parameter we first amend the population such that N is a multiple of 100. 
This allows the subsequent creation of equal-sized explicit strata (each containing 
Ni = 100 elements) and the application of implicitly stratified systematic sampling 
designs in which the sampling interval takes the integer value of 50, the conve-
nience of which will be explained below. From the 50,295 elements, we first drop 
any with item missing values. This is done separately for each of the eleven target 
variables, so the dropped elements will differ between the eleven simulated popula-
tions. Then, a further set of m elements are dropped (m between 0 and 99) in order 
to round the population size down to a multiple of 100. The m elements with the 
smallest analysis weights (largest inclusion probabilities) are chosen. Descriptive 
statistics regarding this process are presented in Table 1. 

For each estimate, the variance and estimated variance for samples of size 
N/50 will be compared under different designs. These designs are simpler than 
those that tend to be used for real social surveys. Specifically they are all equal-
probability single-stage designs, without clustering, and with stratification based 
on a single auxiliary variable, whereas real designs often involve variable prob-
abilities, multi-stage selection, clustering and multiple stratification variables. The 
simplifications are introduced in order to provide a simple illustration in which 
differences between the designs are strictly limited to the aspects of design that are 
the focus of this article.  The following sub-sections describe the sampling variance 
metrics that were calculated for each of the eleven parameters to be estimated. All 
but one of the metrics rely on knowledge of the population size, N, and the popula-
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tion variance of y, S2, each of which were derived in the usual way from the popula-
tion simulated as described above. 

Simple Random Sampling

The variance of y  under simple random sampling is computed as a benchmark and 
will be used later in the calculation of design effects for the various sample designs 
under consideration, to help with interpretation of the findings. It is calculated in 
the usual way:
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Table 1 Simulated Populations for 11 Parameter Estimates

Understanding 
Society sample 

size

Item  
missing

Also 
dropped 
(smallest 
weights)

Simulated 
population 

size, N

Sample 
size, n

Continuous variables
Total monthly income 50,295 78 17 50,200 1,004
Monthly benefit income 50,295 3,236 59 47,000 940
Number of children 50,295 50 45 50,200 1,004
Hours of sleep 50,295 12,420 75 37,800 756
Body mass index 50,295 6,432 63 43,800 876

Binary variables
Limiting long-term illness (%) 50,295 0 95 50,200 1,004
Arthritis (%) 50,295 3,234 61 47,000 940
In paid employment (%) 50,295 90 5 50,200 1,004
Has degree (%) 50,295 86 9 50,200 1,004
Lives with spouse/partner (%) 50,295 0 95 50,200 1,004
Religion makes a great  
difference (%) 50,295 3,234 61 47,000 940

Note: Hours of sleep was asked in a supplemental self-completion questionnaire that was 
returned by only 85.9% of interview respondents, whereas all other items were adminis-
tered in the face-to-face interview. The items on body mass index, arthritis and religion 
were not included in the proxy version of the face-to-face interview, which was adminis-
tered for 6.4% of respondents.
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Explicit Stratified Sampling with 11 Strata

The first stratified design considered is one with eleven explicit strata, defined by 
the person’s age. The first stratum consists of persons aged 16 to 19; the following 
nine strata consist of five-year age bands from 20-24 to 60-64; the final stratum 
consists of person 65 years old or older. Proportionate stratified sampling with a 
sampling fraction of 1 in 50 is used. The sampling variance of a mean is therefore 
calculated as in expression (2) above, with 50

i
i

Nn =  and I = 11.

Explicit Stratified Sampling with N/100 Strata

The second stratified design considered is one with N/100 equal-sized explicit 
strata, again defined by the person’s age. It can be seen from Table 1 that this cor-
responds to between 378 and 502 strata. The strata are created by first sorting the 
population in increasing order of age and then treating the first 100 in sorted order 
as the first stratum, and so on. A simple random sample of n = 2 is selected from 
each stratum. The sampling variance of a mean is therefore calculated as in expres-
sion (2) above, with ni = 2 and I = N/100.

Implicit Stratified Sampling with n = N/50

The third design considered involves sorting the population in increasing order of 
age and then selecting a systematic random sample of N/50 cases using a random 
start between 1 and N/50. There are therefore N/50 possible samples that could be 
selected and the sampling variance of a mean is calculated as the variance of the 
N/50 corresponding sample means, as in expression (5), with n = 50.

In addition to calculating the true sampling variance for this design, the 
expected value of the estimated sampling variance was calculated using the con-
secutive pairs method outlined in section 2 above. This was done by calculating the 
estimate produced by expression (5) for each of the N/50 possible samples and then 
taking the mean of these N/50 values. 

Results
For each of the eleven variables, Table 2 presents the true standard error of the 
sample mean under each of the four sample designs under consideration, as well as 
the expected value of the estimate of the standard error for the ISS design under the 
consecutive pairs method. The true value of the population mean is also presented 
for reference (first column). It is worth noting firstly that the relative standard errors 
vary greatly between the eleven estimates. Under SRS, they range from 0.01 to 
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0.08, with the exception of body mass index, which has a relative standard error of 
0.65 (driven by a number of influential outliers). This provides a range of circum-
stances in which to compare the effects of alternative stratified sample designs. 

As expected, standard errors are in all cases smaller under stratified sam-
pling than under simple random sampling. In fact the rank order of the four designs 
in terms of standard error is the same for all eleven estimates: ESS with eleven 
strata provides an improvement in precision over SRS, ESS with around 500 strata 
(N/100) provides a further improvement, and ISS improves precision further still. 
The relative extent of the standard error reduction varies between the estimates, 
however. For example, for estimating mean number of children or the proportion 
of people in paid employment most of the gains to be had from stratifying by age 
accrue with the use of just eleven explicit strata: extensions to 500 strata or ISS 
provide only very modest marginal gains. For body mass index and for the propor-
tion suffering from arthritis, on the other hand, the gains in moving from eleven to 
500 explicit strata are similar or greater in magnitude to those in moving from no 
strata (SRS) to eleven. These differences evidently reflect the differing nature of the 
associations of the variables with age and are illustrated in Figure 1, which presents 
the design effect for each of the three stratified designs (ratio of sampling vari-
ance under ESS or ISS to that under SRS). The proportion suffering from arthritis 
stands out as the estimate that gains most in terms of precision from each of the 
successive enhancements to stratification. The precision gain in moving from the 
ESS11 to the ESS(N/100) design demonstrates that tendency to suffer from arthritis 
is quite strongly associated with age, even within the eleven strata of the ESS11 
design. However, the further gain in moving to the ISS design shows that even 
within (at least some of) the 470 strata in the ESS(N/100) design there remains an 
association of arthritis with age. This may seem surprising considering that each 
of the 470 strata covers an age range of only around 2.5 months, on average, but 
is explained by the strata towards the upper end of the age range – where arthritis 
is most prevalent – covering larger age ranges, reflecting the smaller population 
sizes. The design effect of around 0.65 for this estimate with ISS – the smallest of 
all the design effects in this study – represents a very considerable precision gain. 
Without stratification, this improvement in precision would require an increase in 
the sample size with SRS from 940 to 1,443 – an increase that would have consider-
able cost.

The other variable that stands out in Figure 1 is the only attitudinal variable in 
the study, the proportion of people agreeing with the statement that religion makes 
a big difference in life. This variable stands out because the precision gains from 
stratification are much more modest than for all other variables. Beliefs about the 
importance of religion are only very weakly associated with age.

Turning now to the final column of Table 2, it can be seen that the consecutive 
pairs method of variance estimation for ISS results in a modest over-estimation of 
standard errors, i.e. an under-estimation of the precision gain from stratification. 
The expected value of the estimated standard error is typically similar to, or just 
slightly smaller than, the true standard error with the ESS(N/100) design. This is of 
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course the design that is assumed by expression (4) with nj = 2, but the estimated 
standard errors differ from the true standard errors under this design due to the data 
having been generated by a different mechanism.

Table 2 Standard errors of means and proportions under four sample designs, 
and mean estimated standard errors for implicit stratified sampling

Mean

s.e. Est.(s.e.)

SRS ESS(11) ESS(N/100) ISS ISS

Continuous variables
Total monthly income 1479.0 49.82 47.28 46.22 45.33 46.24
Monthly benefit income 466.0 37.28 36.23 36.08 35.72 36.15
Number of children 1.600 0.0467 0.0406 0.0403 0.0403 0.0403
Hours of sleep 6.97 0.0587 0.0577 0.0576 0.0574 0.0576
Body mass index 26.06 17.03 16.42 15.35 15.19 15.28

Binary variables
Limiting long-term illness (%) 34.93 1.489 1.400 1.397 1.392 1.396
Arthritis (%) 14.29 1.130 1.042 0.976 0.912 0.968
In paid employment (%) 52.29 1.560 1.362 1.339 1.333 1.339
Has degree (%) 21.37 1.281 1.242 1.236 1.216 1.226
Lives with spouse/partner (%) 61.51 1.520 1.384 1.356 1.338 1.344
Religion makes a great  
difference (%) 22.13 1.340 1.337 1.334 1.331 1.333
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 Figure 1 Design effects for three sample designs
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Discussion
The simulation study has shown, using real survey data, that ISS provides use-
ful precision gains relative to ESS. This is true even when comparing to the most 
detailed form of ESS possible, namely that which involves creating strata such that 
just two selections are made from each stratum (i.e. the minimum number that 
permits variance estimation.) This result should lead researchers to question why, 
whenever useful auxiliary data are available for sample stratification, one would 
ever choose not to use implicit stratification, given that estimates will be less pre-
cise as a result. In practice, ESS typically involves a rather smaller number of strata, 
such that the average number of sample elements selected from each stratum is very 
considerably greater than two, perhaps more akin to the ESS11 design presented 
here, in which around 90 elements are selected per stratum. In this study, the ISS 
design produced substantially smaller standard errors than the ESS11 design. Gains 
are apparent, though more modest, even relative to the ESS(N/100) design. There 
consequently seems to be a strong case for ISS designs rather than ESS designs of 
this kind. 

Furthermore, the approximation commonly used to estimate standard errors 
with ISS results in only a modest over-estimation. This would make statistical tests 
slightly conservative, which is probably more desirable than the false precision that 
would be provided by the opposite. In any case, the extent of the over-estimation 
(systematic error) is most likely small compared to the extent of sampling vari-
ance in the standard error estimate (random error). This conclusion is consistent 
with that of Wolter (1985, p. 283) who compared eight different possible variance 
estimators for systematic sampling and concluded that the consecutive pairs esti-
mator “performed, on average, as well as any of the estimators” and “in very small 
samples … might be the preferred estimator”.

The choice between ESS and ISS would therefore seem to come down to a 
choice between improved precision of the survey estimate or unbiased estimation 
of the precision of the survey estimate. To take the estimation of the proportion of 
people suffering from arthritis as a concrete example, would researchers prefer to 
have a standard error of 0.976 associated with their estimate (expected value) of 
14.29 (the smallest standard error that would be possible with ESS) and to have an 
estimate of the standard error with an expected value of 0.976, or to have a standard 
error of 0.912 (with ISS) and an estimate of the standard error with an expected 
value of 0.968? For descriptive estimation, it is hard to imagine why the less precise 
estimate might be preferred. The choice could be less clear, however, when the 
objective is statistical inference. Analysts could justifiably prefer unbiased hypoth-
esis tests, including those that are implicit in the fitting of statistical models. This 
distinction between different kinds of analysis objectives is particularly problem-
atic for surveys that are used for both types of analysis, as only one sample design 
can be used. The ideal solution might be to develop ways of adjusting in inferential 
analysis for the bias in the variance estimator.
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It should be noted that results could be different if a combination of multiple 
stratification variables were used rather than a single variable, as in the simulations 
presented here. With a single stratification variable, it is likely that any relationship 
of the implicitly stratified ordering with the target parameters will be monotonic, 
or at most quadratic in nature, whereas when combining variables large disconti-
nuities in the distribution can occur at the boundaries of categories of a variable. 
However, there is no suggestion in Wolter (1985, p.268) that the bias in the consecu-
tive pairs estimator is strongly dependent on whether one, two or three stratification 
variables are used.

A limitation of the empirical results presented here is that they are restricted to 
full-sample means and proportions. Some additional simulations (results not shown) 
for subclass means and proportions based on the same variables suggest that ISS 
less frequently provides a noticeable improvement in precision over the ESS(N/100) 
design. This could be because relatively few of the strata in the ESS(N/100) design 
provide more than one element in the subclass, in which case there is little scope for 
further precision gains. However, to explore this limitation further, analysis should 
be extended to a range of subclasses, with different distributions over strata, and to 
other types of ratio estimates. Such investigation is beyond the scope of this article.

A final point to note is that the situation considered here is that of single-
stage sample selection. In practice, stratification is also sometimes used at one or 
more stages of a multi-stage design. For example, many address-based surveys use 
stratification at the first stage but not at the final stage (e.g. Lynn, 2009; Lynn & 
Lievesley, 1991). The precision gains due to stratification are generally likely to 
be more modest in such designs than in single-stage designs, and consequently the 
differences between ISS and ESS may also be more modest. A different situation 
is where stratification is used at the final stage of a multi-stage design. An example 
might be the selection of pupils within schools after first selecting a sample of 
schools. In this situation, precision gains can be considerable and it seems likely 
that the effects described in this article should apply. Indeed, the likely small sam-
ple size within each primary sampling unit is likely to result in ISS having even 
greater advantages, for the design weight reasons discussed in section 1 above.
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