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Abstract
In PIAAC (Programme for the International Assessment of Adult Competencies) inclusion 
probabilities have to be known for every respondent at each sampling stage in all partici-
pating countries. However, in some cases it is not possible to calculate inclusion probabili-
ties for a sample survey analytically – although the underlying design is probabilistic. In 
such cases, simulation studies can help to estimate inclusion probabilities and thus ensure 
that the necessary basis for the calculation of design weights is available. In this section, we 
present a Monte Carlo simulation using the German sample data. During the selection pro-
cess for PIAAC Germany an error had occurred. Because of that, it was not possible to de-
termine the inclusion probabilities analytically. Therefore a simulation study with 10,000 
runs of the erroneous selection process was set up. As a result it was possible to compute 
the inclusion probabilities for the sample of PIAAC Germany.
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1 Sampling for Comparative Surveys
Cross-national surveys have become very popular during the last decades. The rea-
son for this is the multiplicity of questions that can be answered with the help of 
this kind of data. Lynn et al. (2006, p. 10) identify three main objectives for cross-
national surveys, such as PIAAC (Programme for the International Assessment of 
Adult Competencies): 

a) Comparisons of estimates of parameters for different countries
b) Rankings of countries on different dimensions such as averages or totals
c) Estimates for a supra-national region such as the European Union aggregated 

from estimates of different countries.

Sampling strategies have to ensure the equivalence and/or combinability of these 
estimates. For this, both sample designs and estimation strategies have to be chosen 
carefully.

Kish (1994, p. 173) gives a theoretic basis for the application of sample designs 
in cross-cultural surveys: 
“Sample designs may be chosen flexibly and there is no need for similarity of sam-
ple designs. Flexibility of choice is particularly advisable for multinational com-
parisons, because the sampling resources differ greatly between countries. All this 
flexibility assumes probability selection methods: known probabilities of selection 
for all population elements.”

Following this idea, an optimal sample design for cross-national surveys should 
consist of the best random sampling practice used in each participating country. 
The choice of a special sample design depends on the availability of frames, experi-
ence, but also mainly on the costs in different countries. Once the survey has been 
conducted, and adequate estimators have been chosen, the resulting values become 
comparable. To ensure this comparability, design weights have to be computed for 
each country. For this, the inclusion probabilities of every respondent at each stage 
of selection must be known and recorded. Furthermore, the inclusion probabili-
ties for non-respondents must also be recorded at every stage where the necessary 
information is available to have possibilities for the compensation of the nonre-
sponse (see Helmschrott/Martin in this volume) by suitable weighting procedures.
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In the following section basic requirements for the PIAAC sampling are 
explained. For the German survey the sample design is described in detail. Fur-
thermore, the erroneous procedure applied by the survey institute during the selec-
tion of the PIAAC gross sample is presented. Then, the simulation setup is demon-
strated. The simulation results are evaluated in section 3. Finally, conclusions are 
drawn in the last section. 

2 Basic Requirements and Sample Design 
Features of PIAAC Germany 

Derived from the principles of sampling for cross-cultural surveys mentioned above 
the international PIAAC-Consortium expressed the following basic requirements 
for sample designs in the participating countries (OECD 2009, p. 6):
 � Clustered and stratified designs were advised since these design features ensure 

both cost efficiency and variation of socio-demographic variables.
 � A variety of designs could be applied because different countries have different 

access to frames and varying experience with the application of sample designs. 
Self -weighting designs of dwelling units or individuals should be preferred.

 � All countries had to use probability based sampling methods at each stage of 
selection.

 � The target population was defined as non-institutionalized adults between the 
ages of 16 and 65 (inclusive).

2.1 Sample Design and Sample Selection in Germany1

The sample design can be described as stratified two-stage probability design.

Stage 1
The PSUs (municipalities = Primary Sampling Units) were explicitly stratified by 
the variables federal states (Bundesländer), administrative regions (Regierungs-
bezirke), districts (Kreise) and ten grades of urbanization.

The sample points within the PSUs consisted of a pre-specified number of indi-
viduals to be selected at the second sampling stage from the person register held by 
the municipalities. In the vast majority of cases, sample points corresponded to one 
municipality only, while very large municipalities were drawn more than once and 
therefore covered more than one sample point. The number of sample points was 

1 For a more detailed description of the PIAAC sampling procedure, see Zabal et al. 
(2014) as well as Lynn et al. (2014).
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set to 320. This resulted in the selection of 277 municipalities. In every municipal-
ity the sample spread over the whole area, i.e. there was no local clustering. Some 
larger municipalities had more than one sample point. If there were k sample points 
in a municipality the number of persons selected was multiplied by k (see table 1).

The PSUs were allocated proportionally to the size of the target population 
within each stratum. As only whole numbers can be selected as PSUs, the exact 
number of sample points to be selected from each stratum was determined using 
the procedure for unbiased controlled rounding by Cox (1987). This so-called Cox-
Algorithm assures that the cell totals as well as the marginal totals of the allocation 
table remain nearly unchanged by the rounding procedure so that the structural 
properties of the population are not lost due to rounding (see Lynn et al., 2014).

Stage 2
To ensure an equal selection process in each selected municipality the following 
instructions were sent to the registration offices: 

A simple systematic random sample of individuals, with a random start num-
ber and a sampling interval had to be drawn. The sample size in each municipality 
depended on its population size according to table 1. Personal information such as 
name, address, age, gender, nationality had to be provided for each selected indi-
vidual by the registration offices. Data delivered by them were checked for different 
aspects. For more details see Zabal et al. (2014, pp 51).

All individuals (= person addresses) per point were allocated to a matrix 
defined by the variables age (six groups) and gender (see Sample Frame in figure 
1). With an Iterative Proportional Fitting procedure (IPF) 32 individuals per sample 
point were selected from the frame under the constraint to meet the age and gender 
distribution in the federal state (for the result of the selection process, see Alloca-
tion Matrix in figure 1).

The selection of the individuals from the pool of addresses per community 
was done systematically with a selection interval. Unfortunately, in this process a 
programming as well as a sorting error did occur. The length of the interval was 
computed by “number of cases on the sampling frame” divided by “number of 

Table 1  Allocation of the sample sizes to municipalities

Number of inhabitants Sample size

- 99,999 60

100,000 - 499,999 120

500,000 and more 180
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cases to be selected” (see Allocation Matrix) and was not rounded. For the start 
number, a random number between 0 and the length of the interval was generated. 
If the start number was between 0 and 1.5, the program rounded always to 1. If the 
start number was at least 1.5, the program rounded to the closest integer number 
(based on commercial rounding). From a statistical point of view it would have 
been correct to always round up to the closest integer number. 

The example from figure 1 illustrates the optimization algorithm. The adjust-
ment algorithm always results in the same solution of number of elements to be 
selected in each cell (unrounded, exact allocation). In the example this value is 
equal to 3.97. The rounding of this number to the closest integer number is done 
randomly. 3.97 is rounded to 4 in 97% of the cases and to 3 in 3% of the cases. Due 
to the random procedure in the example, the exact number of persons to be selected 
from males, age 30 to 39 in sample point 163 was set to 4. Thus, the interval length 
is 6/4. In a next step the algorithm computed a random start number between 0 
and 1.5, which was here 1.1. If the algorithm had worked correctly, 1.1 would have 
been rounded in some occasions to 1 and in other occasions to 2. However, due to 

Figure 1: Example for the functionality of the optimization algorithm (variables sex and age) 

Official Statistics  Sample Frame  Allocation Matrix 
Sex Age 

Group 
Freq(1)  Sex Age

Group 
Point
163 

Sex Age 
Group 

Point
163 

m 16 – 19 256511  m 16 – 19 2 M 16 – 19 1
m 20 – 29 660824  m 20 – 29 5 M 20 – 29 3
m 30 – 39 672291  m 30 – 39 6  m 30 – 39 4 
m 40 – 49 939744  m 40 – 49 5 M 40 – 49 3
m 50 – 59 727218  m 50 – 59 3 M 50 – 59 2
m 60 – 65 323953  m 60 – 65 2 M 60 – 65 1
f 16 – 19 243785  f 16 – 19 0 F 16 – 19 0
f 20 – 29 648787  f 20 – 29 11 F 20 – 29 7
f 30 – 39 668194  f 30 – 39 3 f 30 – 39 2
f 40 – 49 899595  f 40 – 49 5 f 40 – 49 3
f 50 – 59 726175  f 50 – 59 6 f 50 – 59 5
f 60 – 65 330558  f 60 – 65 2 f 60 – 65 1

total 7097635  total 50 total 32

(1) Source: Statistisches Bundesamt Genesis Table 12411-0012 at  31.12.2009 

  

Sex Age selected 
m 31 1
m 32 0
m 32 1
m 34 1
m 35 0
m 38 1

Figure 1  Example for the functionality of the optimization algorithm (variables 
sex and age)
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the error in the algorithm program, a random number of 1.1 would have always 
been rounded down to 1, and thus the chance for the first person on the frame to be 
selected was higher.

Summary of the selection process in the example
Number of cases due to IPF: 3.97 (rounded to 4)
Length of interval: 6/4 = 1.5
Start value: 1.1
Selected units unrounded: 1.1, 1.1+1.5, 1.1+1.5+1.5, 1.1+1.5+1.5+1.5
Selected units after commercial rounding: 1, 3, 4, 6

According to common practice of the survey institute, the pool of addresses on the 
sample frame is randomly ordered by the Fisher-Yates Shuffle before the sample is 
drawn. This procedure was done with the pool of addresses for the PIAAC sample 
as well. However, for some quality control checks the sample frame was sorted by 
age and this sorting order was unfortunately kept for the drawing. This mistake in 
accordance with the programming error (rounding error of the start number and 
thus higher chances of selection for the  first person on the frame) both had a very 
negative impact (see Figure 2): Some age-groups (those ending with 0) are over-
represented, others (in particular those ending with 9) are under-represented. 

 Figure 2 Age distribution (PIAAC sample unweighted) resulting from the er-
roneous algorithm



273 Gabler/Häder/Kolb: Simulation Approach to Estimate Inclusion Probabilities

2.2 Simulation of the Selection Procedure

As a consequence, the gross sample has no longer the characteristic of equal selec-
tion probabilities for all elements. Instead, the selection probabilities for persons 
varied. Since it was too time consuming to model the incorrect selection probabili-
ties, we decided to compute them through simulations, i.e. through a repetition of 
the erroneous optimization algorithm for 10,000 times. The idea was to rebuild the 
erroneous sampling procedure. Thus, the selection of the individuals from the pool 
of addresses was repeated 10,000 times. This was the basis of the simulation. The 
simulation model is described in figure 3.

In our model the random shuffle was repeated each time before a new iteration 
occurred – as it was done in the original optimization process. Thus, the following 
steps were repeated 10,000 times:
 � The sample frame was randomly ordered according to the Fisher-Yates Shuffle.
 � The sample frame was sorted by age.
 � The sample was drawn.

Figure 3: Comparison of the erroneous sample selection process and the simulation model  

Sample Selection  Simulation Model  

    

Sample frame randomly 
ordered  Sample frame randomly 

ordered  

    

Sample frame sorted by 
age  Sample frame sorted by 

age 

10,000 sim
ulation runs 

   

Allocation matrix by IPF  Allocation matrix by IPF 

   

Selection of elements 
(erroneous algorithm)  Selection of elements 

(erroneous algorithm) 

   

Sample  Sample  
 

 
Figure 3  Comparison of the erroneous sample selection process and the simula-

tion model 
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Again, in order to estimate the selection probability of each element on the sample 
frame, a count was made of how many times an element was selected in each of the 
10,000 samples.

The results of the simulation study are presented in the next section.

3 Evaluation of the PIAAC Sampling Procedure

To evaluate the results of the simulation – it was a Monte Carlo simulation – some 
theoretical considerations have to be explained first. The sample selection of the 
PIAAC sample is the result of a random experiment. For the PIAAC sample the 
random experiment to generate the PIAAC sample consists of several random 
experiments. If the random experiment would have been conducted as planned by 
the survey institute, the result would be that each person of the population would 
have the same selection probability. Due to the described error in the course of the 
random experiment, the equal probability is interfered, but not the general charac-
ter of a probability sample as a result of a random experiment, i.e.
 � that the random experiment could be repeated unlimited times, and 
 � that the results of the random experiment, i.e. possible samples, may be differ-

ent, meaning that the result of the random experiment cannot be predicted with 
certainty for each iteration.

For the r = 10,000 simulation runs it was never the case that an element was not at 
all selected. Thus, it can be concluded that the selection probabilities are all posi-
tive. The error in the course of the random experiment affected only a part of the 
whole random experiment.

Ideally, as mentioned above, the selection of the PIAAC sample should have 
led to equal selection probabilities. This condition is no longer given due to the 
error in the course of the random experiment. The question is which selection prob-
abilities have been generated by the selection process. Due to the error and the fact 
that the whole sampling procedure is built on random processes and sort sequences, 
it is very difficult and time-consuming for either GESIS or the survey institute to 
reflect this error in formulas in order to exactly calculate the selection probabilities. 

The delivery deadline for the sample to the Consortium was dated shortly after 
the problem was noticed. The calculations needed to be carried out within a short 
time span. Furthermore, the amount of time that is necessary for one simulation run 
is not negligible, but cannot be determined exactly. It was thus necessary to find a 
trade-off between calculation time and an adequate number of simulation runs. The 
number of 10,000 simulation runs was the highest number which could be achieved 
under the prevailing circumstances. It was important that in every single simula-
tion run the erroneous algorithm performed like in reality. Therefore, it was neither 
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possible nor justified to program the algorithm more effectively. If one regards the 
high sampling fraction, it is clear that a higher number was not necessary in this 
coherence.

However, the r = 10,000 samples generated by the simulation, provide an 
excellent basis for a sufficiently precise estimation of the true selection probabili-
ties. This will be justified as follows:

We observe the event of selecting a person into a sample. The true selection 
probability given a single iteration of the random experiment is P. In r indepen-
dent repetitions of the random experiment the person is selected in, say p·r  sam-
ples. Thus, according to statistical rules for large r and not too small p (since p is 
expected to differ not too much from the theoretical inclusion probability)

 − −
− + 

  

( ) ( ). ; .p p p pp p
r r

1 11 96 1 96

includes the true value P with a probability of 95%. Due to −
< =

(1 ) 11.96 0.01p p
r r

 
with r = 10,000, the value p computed by simulation only deviates at maximum 
in the third decimal place from the true value P, most likely even later. This error 
seems to be negligible in practice. 

The experiment is repeated very often and following the law of large numbers 
the averaged inclusion probability for one element gets asymptotically closer to the 
true inclusion probability. This principle is commonly used in Monte Carlo simula-
tions. For the statistical properties of the Monte Carlo Estimator, see for example 
Robert et al. (1999, pp. 20), Rizzo (2008, pp. 153) or Hammersley (1964, pp. 51). 
Theoretical inclusion probabilities are the result of 
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where MOS is the measure of size and
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is the probability for selecting community g. smpg is the number of sample 
points in community g, which were selected using the Cox (1987) algorithm, i.e. 
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Due to the error in the optimization algorithm used by our survey organization 
for the sample selection, an equal probability sample was not realized. Thus, inclu-
sion probabilities |π PIAAC

gi b  could only be determined by approximation through 
simulations. For r = 10,000 simulated samples, the following inclusion probabili-
ties |π π⋅b PIAAC
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neous and correct algorithm (see histograms in Figure 4).
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where ni is the number of observations in weighting class i and wi are the weights 
in weighting class i. An explanation for the higher design effect given the erroneous 
optimization algorithm implemented by the survey organization is that this selec-
tion process favored certain units while neglecting certain other units. As a conse-
quence, the required equal selection probability was not achieved.

4 Conclusion
Theoretically, the PIAAC sample for Germany should have been selected with 
equal probabilities for all individuals. However, due to an error in the selection 
procedure, this target could not be realized. Instead, an erroneous optimization 
algorithm was applied which led to inclusion probabilities that were too complex 
to calculate for us in the available time. But since the optimization procedure was 
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a random procedure, it was possible to determine the probabilities with the help 
of a simulation. The selection procedure was repeated 10,000 times and the num-
ber of times being included in the sample for each individual was reported. This 
number divided by 10,000 yields a good approximation of the inclusion probabili-
ties. The disadvantage of the incorrect optimization algorithm for our sample is the 
higher design effect compared to the one based on equal inclusion probabilities. 
This design effect due to unequal inclusion probabilities was 1.22, i.e. the effec-
tive sample size was neff_p = nnet/Deffp = 5,319/1.22= 4,360. In other words: The 
precision of the estimates is – only because of this error – just as high as if 4,360 
interviews of a simple random sample would have been conducted. This is 82% of 
the original sample size. 

Nevertheless, the PIAAC sample is a full probability sample and complies 
with all requirements of the Consortium. The sample passed the adjudication pro-
cedure with the following statements: “Through Consortium review of the prelimi-
nary SDIF, an anomaly was detected in the age distribution of the sample, with 
spikes at ages 30, 40, and 50. Germany investigated the reason for this pattern and 
discovered an error in the sample selection algorithm at the last stage of selection. 
Germany provided evidence that the sample remained probability-based despite 
this error and corrected the selection probabilities to reflect the actual selection 
algorithm used. However, they were unable to calculate exact selection probabili-
ties, so the probabilities are based on a simulation” (see OECD 2013, Appendix 7, 
p. 69).

Quite generally, a good approximation for the true inclusion probabilities with 
10,000 simulation runs is only meaningful if the sampling fraction f is high enough. 
In the case of the PIAAC-sample 10,240= =∑ g

g
n n  out of 23,117= =∑ g

g
N M  

cases had to be selected, so f=n/N=0.44. Otherwise, with a (much) lower sampling 
fraction the simulation with 10,000 replicates just would have led to white noise 
and it would have been impossible to determine inclusion probabilities this way.
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